Grade 9

ICONIC

Term 3 Week 2

6 Complete the flow diagram and table using the verbal

 description.The output value is 2,5 times the input value minus 3,2 .
The input value is an even number between 0 and 12 .

9 Complete.

Number $\mathbf{1}$	Number $\mathbf{2}$	LCM	HCF	Number 1 Number 2	LCM \times HCF	
$\mathbf{1}$		24	24	3	72	
$\mathbf{2}$	10	6				
$\mathbf{3}$	18					108
$\mathbf{4}$	20	6				
$\mathbf{5}$	21	35				735
$\mathbf{6}$	$18 x$	$6 x^{2}$	$18 x^{2}$			
$\mathbf{7}$	$14 x y^{3}$	$42 y^{2}$				
$\mathbf{8}$	$10 a b c$					$80 a^{2} b^{3} c^{3}$

7 Complete.
124
Product of prime factors $=2^{3} \times 3$
Number of factors $=(3+1)(1+1)=8$ All factors $=\{1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24\}$
236
Product of prime factors $=2^{-} \times 3^{-}$
Number of factors $=\left(__{+}+1\right)(\ldots+1)=$ \qquad
All factors = \qquad $-$
$3 \quad 30$
Product of prime factors $=$ \qquad -
Number of factors $=$ \qquad -
All factors = \qquad
478
Product of prime factors = \qquad
Number of factors $=$ \qquad
All factors $=$ \qquad
$5 \quad 12 x^{2} y$
Product of prime factors $=$ \qquad
Number of factors $=$ \qquad
All factors = \qquad

8 Find the LCM and HCF.

$1 \quad 18$ and 24
178 and 24

	Prime factorisation					
	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{1 1}$	
$\mathbf{1 8}$	2	3^{2}				
$\mathbf{2 4}$	2^{3}	3				
LCM $\left(\boldsymbol{p}^{\text {max }}\right)$	2^{3}	3^{2}				
HCF $\left(\boldsymbol{p}^{\text {min }}\right)$	2	3				

$28 x y^{2}$ and $12 x^{2} y$

	Prime factorisation					
$8 x y^{2}$						
$12 x^{2} \boldsymbol{y}$						
LCM $\left(\boldsymbol{p}^{\text {max }}\right)$						
HCF $\left(\boldsymbol{p}^{\text {min }}\right)$						

10 HCF of fractions $=\frac{\text { HCF of numerators }}{\text { LCM of denominators }} \quad$ LCM of fractions $=\frac{L C M \text { of numerators }}{\text { HCF of denominators }}$
1 HCF of $\frac{2}{9}$ and $\frac{8}{15}=\frac{2}{45}$
3 HCF of $\frac{12}{11}$ and $\frac{4}{15}=-$
5 HCF of $\frac{9}{10}$ and $\frac{17}{24}=-$
LCM of $\frac{2}{27}$ and $\frac{8}{9}=-$
LCM of $\frac{12}{11}$ and $\frac{4}{15}=$
LCM of $\frac{9}{10}$ and $\frac{17}{24}=$
2 HCF of $\frac{7}{3}$ and $\frac{22}{15}=-$
4 HCF of $\frac{8}{9}$ and $\frac{14}{16}=-$
LCM of $\frac{7}{3}$ and $\frac{22}{15}=-$
LCM of $\frac{8}{9}$ and $\frac{14}{16}=-$

